Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.532
Filtrar
1.
AIDS ; 38(6): 779-789, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38578957

RESUMEN

OBJECTIVE: This study aims to investigate the functions and mechanistic pathways of Astrocyte Elevated Gene-1 (AEG-1) in the disruption of the blood-retinal barrier (BRB) caused by the HIV-1 envelope glycoprotein gp120. DESIGN: We utilized ARPE-19 cells challenged with gp120 as our model system. METHODS: Several analytical techniques were employed to decipher the intricate interactions at play. These included PCR, Western blot, and immunofluorescence assays for the molecular characterization, and transendothelial electrical resistance (TEER) measurements to evaluate barrier integrity. RESULTS: We observed that AEG-1 expression was elevated, whereas the expression levels of tight junction proteins ZO-1, Occludin, and Claudin5 were downregulated in gp120-challenged cells. TEER measurements corroborated these findings, indicating barrier dysfunction. Additional mechanistic studies revealed that the activation of NFκB and MMP2/9 pathways mediated the AEG-1-induced barrier destabilization. Through the use of lentiviral vectors, we engineered cell lines with modulated AEG-1 expression levels. Silencing AEG-1 alleviated gp120-induced downregulation of tight junction proteins and barrier impairment while concurrently inhibiting the NFκB and MMP2/9 pathways. Conversely, overexpression of AEG-1 exacerbated these pathological changes, further compromising the integrity of the BRB. CONCLUSION: Gp120 upregulates the expression of AEG-1 and activates the NFκB and MMP2/9 pathways. This in turn leads to the downregulation of tight junction proteins, resulting in the disruption of barrier function.


Asunto(s)
Barrera Hematorretinal , Proteína gp120 de Envoltorio del VIH , Infecciones por VIH , VIH-1 , Proteínas de la Membrana , Proteínas de Unión al ARN , Humanos , Barrera Hematorretinal/metabolismo , Infecciones por VIH/metabolismo , VIH-1/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Proteína gp120 de Envoltorio del VIH/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/metabolismo
2.
Cell Host Microbe ; 32(4): 441-442, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38604120

RESUMEN

The size of the nuclear pore should, in principle, prevent HIV-1 entry. However, HIV-1 capsid is able to gain nuclear pore entry. In a recent issue of Nature, Fu et al. and Dickson et al. demonstrate that the HIV-1 capsid mimics the nuclear transport protein karyopherins to access host nuclei.


Asunto(s)
Infecciones por VIH , Poro Nuclear , Humanos , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , Infecciones por VIH/metabolismo , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo
3.
J Neuroinflammation ; 21(1): 107, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659061

RESUMEN

Neuroinflammation and synaptodendritic damage represent the pathological hallmarks of HIV-1 associated cognitive disorders (HAND). The post-synaptic protein neurogranin (Nrgn) is significantly reduced in the frontal cortex of postmortem brains from people with HIV (PWH) and it is associated with inflammatory factors released by infected microglia/macrophages. However, the mechanism involved in synaptic loss have yet to be elucidated. In this study, we characterized a newly identified long non-coding RNA (lncRNA) transcript (RP11-677M14.2), which is antisense to the NRGN locus and is highly expressed in the frontal cortex of HIV-1 individuals. Further analysis indicates an inverse correlation between the expression of RP11-677M14.2 RNA and Nrgn mRNA. Additionally, the Nrgn-lncRNA axis is dysregulated in neurons exposed to HIV-1 infected microglia conditioned medium enriched with IL-1ß. Moreover, in vitro overexpression of this lncRNA impacts Nrgn expression at both mRNA and protein levels. Finally, we modeled the Nrgn-lncRNA dysregulation within an HIV-1-induced inflammatory environment using brain organoids, thereby corroborating our in vivo and in vitro findings. Together, our study implicates a plausible role for lncRNA RP11-677M14.2 in modulating Nrgn expression that might serve as the mechanistic link between Nrgn loss and cognitive dysfunction in HAND, thus shedding new light on the mechanisms underlying synaptodendritic damage.


Asunto(s)
VIH-1 , Neurogranina , Enfermedades Neuroinflamatorias , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/genética , Neurogranina/metabolismo , Neurogranina/genética , Enfermedades Neuroinflamatorias/metabolismo , Infecciones por VIH/metabolismo , Infecciones por VIH/genética , Infecciones por VIH/patología , Microglía/metabolismo , Masculino , Animales
4.
Front Immunol ; 15: 1368465, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646526

RESUMEN

HIV-infection of microglia and macrophages (MMs) induces neuronal injury and chronic release of inflammatory stimuli through direct and indirect molecular pathways. A large percentage of people with HIV-associated neurologic and psychiatric co-morbidities have high levels of circulating inflammatory molecules. Microglia, given their susceptibility to HIV infection and long-lived nature, are reservoirs for persistent infection. MMs and neurons possess the molecular machinery to detect pathogen nucleic acids and proteins to activate innate immune signals. Full activation of inflammasome assembly and expression of IL-1ß requires a priming event and a second signal. Many studies have demonstrated that HIV infection alone can activate inflammasome activity. Interestingly, secreted phosphoprotein-1 (SPP1/OPN) expression is highly upregulated in the CNS of people infected with HIV and neurologic dysfunction. Interestingly, all evidence thus far suggests a protective function of SPP1 signaling through mammalian target of rapamycin (mTORC1/2) pathway function to counter HIV-neuronal injury. Moreover, HIV-infected mice knocked down for SPP1 show by neuroimaging, increased neuroinflammation compared to controls. This suggests that SPP1 uses unique regulatory mechanisms to control the level of inflammatory signaling. In this mini review, we discuss the known and yet-to-be discovered biological links between SPP1-mediated stimulation of mTOR and inflammasome activity. Additional new mechanistic insights from studies in relevant experimental models will provide a greater understanding of crosstalk between microglia and neurons in the regulation of CNS homeostasis.


Asunto(s)
Infecciones por VIH , Inflamasomas , Microglía , Neuronas , Osteopontina , Transducción de Señal , Serina-Treonina Quinasas TOR , Humanos , Inflamasomas/metabolismo , Microglía/metabolismo , Microglía/inmunología , Animales , Serina-Treonina Quinasas TOR/metabolismo , Neuronas/metabolismo , Neuronas/virología , Infecciones por VIH/inmunología , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , Osteopontina/metabolismo
5.
Sci Adv ; 10(12): eadl0368, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38507500

RESUMEN

CCR5 serves as R5-tropic HIV co-receptor. Knocking out CCR5 in HIV patients, which has occurred <10 times, is believed important for cure. JAK/STAT inhibitors tofacitinib and ruxolitinib inhibit CCR5 expression in HIV+ viremic patients. We investigated the association of JAK/STAT signaling pathway with CCR5/CCR2 expression in human primary CD4+ T cells and confirmed its importance. Six of nine JAK/STAT inhibitors that reduced CCR5/CCR2 expression were identified. Inhibitor-treated CD4+ T cells were relatively resistant, specifically to R5-tropic HIV infection. Furthermore, single JAK2, STAT3, STAT5A, and STAT5B knockout and different combinations of JAK/STAT knockout significantly reduced CCR2/CCR5 expression of both RNA and protein levels, indicating that CCR5/CCR2 expression was positively regulated by JAK-STAT pathway in CD4+ T cells. Serum and glucocorticoid-regulated kinase 1 (SGK1) knockout affected CCR2/CCR5 gene expression, suggesting that SGK1 is involved in CCR2/CCR5 regulation. If cell surface CCR5 levels can be specifically and markedly down-regulated without adverse effects, that may have a major impact on the HIV cure agenda.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Linfocitos T/metabolismo , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Infecciones por VIH/metabolismo , Quinasas Janus/metabolismo , VIH-1/fisiología , Receptores CCR5/genética , Receptores CCR5/metabolismo , Transducción de Señal , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Linfocitos T CD4-Positivos/metabolismo
6.
Viruses ; 16(3)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38543785

RESUMEN

HIV-1 encodes four accesory proteins in addition to its structural and regulatory genes. Uniquely amongst them, Vpr is abundantly present within virions, meaning it is poised to exert various biological effects on the host cell upon delivery. In this way, Vpr contributes towards the establishment of a successful infection, as evidenced by the extent to which HIV-1 depends on this factor to achieve full pathogenicity in vivo. Although HIV infects various cell types in the host organism, CD4+ T cells are preferentially targeted since they are highly permissive towards productive infection, concomitantly bringing about the hallmark immune dysfunction that accompanies HIV-1 spread. The last several decades have seen unprecedented progress in unraveling the activities Vpr possesses in the host cell at the molecular scale, increasingly underscoring the importance of this viral component. Nevertheless, it remains controversial whether some of these advances bear in vivo relevance, since commonly employed cellular models significantly differ from primary T lymphocytes. One prominent example is the "established" ability of Vpr to induce G2 cell cycle arrest, with enigmatic physiological relevance in infected primary T lymphocytes. The objective of this review is to present these discoveries in their biological context to illustrate the mechanisms whereby Vpr supports HIV-1 infection in CD4+ T cells, whilst identifying findings that require validation in physiologically relevant models.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Humanos , Linfocitos T/metabolismo , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/metabolismo , VIH-1/genética , Infecciones por VIH/metabolismo , Linfocitos T CD4-Positivos/metabolismo
7.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38542221

RESUMEN

HIV-associated neurocognitive disorders (HAND) affect 15-55% of HIV-positive patients and effective therapies are unavailable. HIV-infected monocyte-derived macrophages (MDM) invade the brain of these individuals, promoting neurotoxicity. We demonstrated an increased expression of cathepsin B (CATB), a lysosomal protease, in monocytes and post-mortem brain tissues of women with HAND. Increased CATB release from HIV-infected MDM leads to neurotoxicity, and their secretion is associated with NF-κB activation, oxidative stress, and lysosomal exocytosis. Cannabinoid receptor 2 (CB2R) agonist, JWH-133, decreases HIV-1 replication, CATB secretion, and neurotoxicity from HIV-infected MDM, but the mechanisms are not entirely understood. We hypothesized that HIV-1 infection upregulates the expression of proteins associated with oxidative stress and that a CB2R agonist could reverse these effects. MDM were isolated from healthy women donors (n = 3), infected with HIV-1ADA, and treated with JWH-133. After 13 days post-infection, cell lysates were labeled by Tandem Mass Tag (TMT) and analyzed by LC/MS/MS quantitative proteomics bioinformatics. While HIV-1 infection upregulated CATB, NF-κB signaling, Nrf2-mediated oxidative stress response, and lysosomal exocytosis, JWH-133 treatment downregulated the expression of the proteins involved in these pathways. Our results suggest that JWH-133 is a potential alternative therapy against HIV-induced neurotoxicity and warrant in vivo studies to test its potential against HAND.


Asunto(s)
Cannabinoides , Infecciones por VIH , VIH-1 , Humanos , Femenino , FN-kappa B/metabolismo , Proteómica , Espectrometría de Masas en Tándem , Macrófagos/metabolismo , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/metabolismo , Estrés Oxidativo , Exocitosis , Lisosomas/metabolismo
8.
Brain Behav Immun ; 118: 1-21, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38360376

RESUMEN

Human immunodeficiency virus-1 (HIV-1) infects the central nervous system (CNS) and causes HIV-associated neurocognitive disorders (HAND) in about half of the population living with the virus despite combination anti-retroviral therapy (cART). HIV-1 activates the innate immune system, including the production of type 1 interferons (IFNs) α and ß. Transgenic mice expressing HIV-1 envelope glycoprotein gp120 (HIVgp120tg) in the CNS develop memory impairment and share key neuropathological features and differential CNS gene expression with HIV patients, including the induction of IFN-stimulated genes (ISG). Here we show that knocking out IFNß (IFNßKO) in HIVgp120tg and non-tg control mice impairs recognition and spatial memory, but does not affect anxiety-like behavior, locomotion, or vision. The neuropathology of HIVgp120tg mice is only moderately affected by the KO of IFNß but in a sex-dependent fashion. Notably, in cerebral cortex of IFNßKO animals presynaptic terminals are reduced in males while neuronal dendrites are reduced in females. The IFNßKO results in the hippocampal CA1 region of both male and female HIVgp120tg mice in an ameliorated loss of neuronal presynaptic terminals but no protection of neuronal dendrites. Only female IFNß-deficient HIVgp120tg mice display diminished microglial activation in cortex and hippocampus and increased astrocytosis in hippocampus compared to their IFNß-expressing counterparts. RNA expression for some immune genes and ISGs is also affected in a sex-dependent way. The IFNßKO abrogates or diminishes the induction of MX1, DDX58, IRF7 and IRF9 in HIVgp120tg brains of both sexes. Expression analysis of neurotransmission related genes reveals an influence of IFNß on multiple components with more pronounced changes in IFNßKO females. In contrast, the effects of IFNßKO on MAPK activities are independent of sex with pronounced reduction of active ERK1/2 but also of active p38 in the HIVgp120tg brain. In summary, our findings show that the absence of IFNß impairs memory dependent behavior and modulates neuropathology in HIVgp120tg brains, indicating that its absence may facilitate development of HAND. Moreover, our data suggests that endogenous IFNß plays a vital role in maintaining neuronal homeostasis and memory function.


Asunto(s)
Infecciones por VIH , VIH-1 , Interferón beta , Animales , Femenino , Masculino , Ratones , Encéfalo/metabolismo , Infecciones por VIH/metabolismo , VIH-1/metabolismo , Interferón beta/metabolismo , Ratones Transgénicos
9.
Brain Behav Immun ; 118: 149-166, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38423397

RESUMEN

Macrophages (MΦ) infected with human immunodeficiency virus (HIV)-1 or activated by its envelope protein gp120 exert neurotoxicity. We found previously that signaling via p38 mitogen-activated protein kinase (p38 MAPK) is essential to the neurotoxicity of HIVgp120-stimulated MΦ. However, the associated downstream pathways remained elusive. Here we show that cysteinyl-leukotrienes (CysLT) released by HIV-infected or HIVgp120 stimulated MΦ downstream of p38 MAPK critically contribute to neurotoxicity. SiRNA-mediated or pharmacological inhibition of p38 MAPK deprives MΦ of CysLT synthase (LTC4S) and, pharmacological inhibition of the cysteinyl-leukotriene receptor 1 (CYSLTR1) protects cerebrocortical neurons against toxicity of both gp120-stimulated and HIV-infected MΦ. Components of the CysLT pathway are differentially regulated in brains of HIV-infected individuals and a transgenic mouse model of NeuroHIV (HIVgp120tg). Moreover, genetic ablation of LTC4S or CysLTR1 prevents neuronal damage and impairment of spatial memory in HIVgp120tg mice. Altogether, our findings suggest a novel critical role for cysteinyl-leukotrienes in HIV-associated brain injury.


Asunto(s)
Cisteína , Infecciones por VIH , VIH-1 , Ratones , Humanos , Animales , VIH-1/metabolismo , Macrófagos/metabolismo , Leucotrienos/metabolismo , Neuronas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Ratones Transgénicos , Infecciones por VIH/metabolismo
10.
Sci Adv ; 10(8): eadk8297, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38394201

RESUMEN

HIV-1 Gag proteins can multimerize upon the viral genomic RNA or multiple random cellular messenger RNAs to form a virus particle or a virus-like particle, respectively. To date, whether the two types of particles form via the same Gag multimerization process has remained unclarified. Using photoactivated localization microscopy to illuminate Gag organizations and dynamics at the nanoscale, here, we showed that genomic RNA mediates Gag multimerization in a more cluster-centric, cooperative, and spatiotemporally coordinated fashion, with the ability to drive dense Gag clustering dependent on its ability to act as a long-stranded scaffold not easily attainable by cellular messenger RNAs. These differences in Gag multimerization were further shown to affect downstream selective protein sorting into HIV membranes, indicating that the choice of RNA for packaging can modulate viral membrane compositions. These findings should advance the understanding of HIV assembly and further benefit the development of virus-like particle-based therapeutics.


Asunto(s)
Infecciones por VIH , ARN Viral , Humanos , ARN Viral/genética , ARN Viral/metabolismo , Membrana Celular/metabolismo , Productos del Gen gag/genética , Productos del Gen gag/metabolismo , ARN Mensajero/metabolismo , Infecciones por VIH/metabolismo , Multimerización de Proteína
11.
Arch Biochem Biophys ; 754: 109947, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417690

RESUMEN

The Human Immunodeficiency Virus-1 (HIV-1) tends to activate cellular promoters driving expression of pro-viral genes by complex host-virus interactions for productive infection. We have previously demonstrated that expression of such a positive host factor HSF1 (heat shock factor 1) is elevated during HIV-1 infection; however, the mechanism remains to be elucidated. In the present study, we therefore examined whether HSF1 promoter is induced during HIV-1 infection leading to up-regulation of hsf1 gene expression. We mapped the putative transcription start site (TSS) predicted by Eukaryotic promoter database and deletion constructs of the predicted promoter region were tested through luciferase assay to identify the active promoter. The 347 bp upstream to 153 bp downstream region around the putative TSS displayed the highest activity and both Sp1 (stimulating protein 1) and HSF1 itself were identified to be important for its basal activation. Activity of HSF1 promoter was further stimulated during HIV-1 infection in CD4+ T cells, where interestingly the HSF1-site itself seems to play a major role. In addition, HIV-1 protein Nef (negative factor) was also observed to be responsible for the virus-mediated induction of hsf1 gene expression. Chromatin-immunoprecipitation assays further demonstrate that Nef and HSF1 are co-recruited to the HSF1-binding site and cooperatively act on this promoter. The interplay between host HSF1 and viral Nef on HSF1 promoter eventually leads to increase in HSF1 expression during HIV-1 infection. Understanding the mechanism of HSF1 up-regulation during HIV-1 infection might contribute to future antiviral strategies as HSF1 is a positive regulator of virus replication.


Asunto(s)
Infecciones por VIH , VIH-1 , Factores de Transcripción del Choque Térmico , Productos del Gen nef del Virus de la Inmunodeficiencia Humana , Humanos , VIH-1/fisiología , Regiones Promotoras Genéticas , Activación Transcripcional , Proteínas Virales/genética , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Infecciones por VIH/metabolismo , Regulación hacia Arriba
12.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167084, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38368823

RESUMEN

Liver fibrosis is the excessive accumulation of extracellular matrix proteins, primarily collagen, in response to liver injury caused by chronic liver diseases. HIV infection accelerates the progression of liver fibrosis in patients co-infected with HCV or HBV compared to those who are only mono-infected. The early event in the progression of liver fibrosis involves the activation of hepatic stellate cells (HSCs), which entails the loss of lipid droplets (LD) to fuel the production of extracellular matrix components crucial for liver tissue healing. Thus, we are examining the mechanism by which HIV stimulates the progression of liver fibrosis. HIV-R5 tropic infection was unable to induce the expression of TGF-ß, collagen deposition, α-smooth muscle actin (α-SMA), and cellular proliferation. However, this infection induced the secretion of the profibrogenic cytokine IL-6 and the loss of LD. This process involved the participation of peroxisome proliferator-activated receptor (PPAR)-α and an increase in lysosomal acid lipase (LAL), along with the involvement of Microtubule-associated protein 1 A/1B-light chain 3 (LC3), strongly suggesting that LD loss could occur through acid lipolysis. These phenomena were mimicked by the gp120 protein from the R5 tropic strain of HIV. Preincubation of HSCs with the CCR5 receptor antagonist, TAK-779, blocked gp120 activity. Additionally, experiments performed with pseudotyped-HIV revealed that HIV replication could also contribute to LD loss. These results demonstrate that the cross-talk between HSCs and HIV involves a series of interactions that help explain some of the mechanisms involved in the exacerbation of liver damage observed in co-infected individuals.


Asunto(s)
Infecciones por VIH , Hepatopatías , Humanos , Colágeno/metabolismo , Células Estrelladas Hepáticas/metabolismo , Infecciones por VIH/metabolismo , Gotas Lipídicas/metabolismo , Cirrosis Hepática/patología , Hepatopatías/patología , Proteína gp120 de Envoltorio del VIH
13.
Viruses ; 16(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38400005

RESUMEN

Worldwide, almost 40 million people are currently living with HIV-1. The implementation of cART inhibits HIV-1 replication and reduces viremia but fails to eliminate HIV-1 from latently infected cells. These cells are considered viral reservoirs from which HIV-1 rebounds if cART is interrupted. Several efforts have been made to identify these cells and their niches. There has been little success in diminishing the pool of latently infected cells, underscoring the urgency to continue efforts to fully understand how HIV-1 establishes and maintains a latent state. Reactivating HIV-1 expression in these cells using latency-reversing agents (LRAs) has been successful, but only in vitro. This review aims to provide a broad view of HIV-1 latency, highlighting Canadian contributions toward these aims. We will summarize the research efforts conducted in Canadian labs to understand the establishment of latently infected cells and how this informs curative strategies, by reviewing how HIV latency is established, which cells are latently infected, what methodologies have been developed to characterize them, how new compounds are discovered and evaluated as potential LRAs, and what clinical trials aim to reverse latency in people living with HIV (PLWH).


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Humanos , Latencia del Virus , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Canadá , Activación Viral
14.
Rev Med Virol ; 34(1): e2519, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38282400

RESUMEN

The activities of HIV-1 in the central nervous system (CNS) are responsible for a dysregulated neuroinflammatory response and the subsequent development of HIV-associated neurocognitive disorders (HAND). The use of post-mortem human brain tissue is pivotal for studying the neuroimmune mechanisms of CNS HIV infection. To date, numerous studies have investigated HIV-1-induced neuroinflammation in post-mortem brain tissue. However, from the commonly investigated studies in this line of research, it is not clear which neuroinflammatory markers are consistently associated with HIV neurocognitive impairment (NCI) and neuropathology (i.e., HIV-encephalitis, HIVE). Therefore, we conducted a systematic review of the association between neuroinflammation and NCI/HIVE from studies investigating post-mortem brain tissue. Our aim was to synthesise the published data to date to provide commentary on the most noteworthy markers that are associated with NCI/HIVE. PubMed, Scopus, and Web of Science databases were searched using a search protocol designed specifically for this study. Sixty-one studies were included that investigated the levels of inflammatory markers based on their gene and protein expression in association with NCI/HIVE. The findings revealed that the (1) transcript expressions of IL-1ß and TNF-α were consistently associated with NCI/HIVE, whereas CCL2 and IL-6 were commonly not associated with NCI/HIVE, (2) protein expressions of CD14, CD16, CD68, Iba-1, IL-1ß and TNF-α were consistently associated with NCI/HIVE, while CD45, GFAP, HLA-DR, IL-1 and IL-6 were commonly not associated with NCI/HIVE, and (3) gene and protein expressions of CNS IL-1ß and TNF-α were consistently associated with NCI/HIVE, while IL-6 was consistently not associated with NCI/HIVE. These markers highlight the commonly investigated markers in this line of research and elucidates the neuroinflammatory mechanisms in the HIV-1 brain that are involved in the pathophysiology of NCI/HIVE. These markers and related pathways should be investigated for the development of improved diagnostics, prognostics, and therapeutics of HAND.


Asunto(s)
Encefalitis , Infecciones por VIH , Seropositividad para VIH , VIH-1 , Humanos , Infecciones por VIH/metabolismo , Enfermedades Neuroinflamatorias , Factor de Necrosis Tumoral alfa , Interleucina-6/metabolismo , Encéfalo/patología , Encefalitis/complicaciones , Encefalitis/metabolismo , Encefalitis/patología , Seropositividad para VIH/complicaciones , Seropositividad para VIH/metabolismo , Seropositividad para VIH/patología
15.
J Biol Chem ; 300(3): 105687, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38280430

RESUMEN

HIV-1 Gag protein is synthesized in the cytosol and is transported to the plasma membrane, where viral particle assembly and budding occur. Endosomes are alternative sites of Gag accumulation. However, the intracellular transport pathways and carriers for Gag have not been clarified. We show here that Syntaxin6 (Syx6), a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) involved in membrane fusion in post-Golgi networks, is a molecule responsible for Gag trafficking and also for tumor necrosis factor-α (TNFα) secretion and that Gag and TNFα are cotransported via Syx6-positive compartments/vesicles. Confocal and live-cell imaging revealed that Gag colocalized and cotrafficked with Syx6, a fraction of which localizes in early and recycling endosomes. Syx6 knockdown reduced HIV-1 particle production, with Gag distributed diffusely throughout the cytoplasm. Coimmunoprecipitation and pulldown show that Gag binds to Syx6, but not its SNARE partners or their assembly complexes, suggesting that Gag preferentially binds free Syx6. The Gag matrix domain and the Syx6 SNARE domain are responsible for the interaction and cotrafficking. In immune cells, Syx6 knockdown/knockout similarly impaired HIV-1 production. Interestingly, HIV-1 infection facilitated TNFα secretion, and this enhancement did not occur in Syx6-depleted cells. Confocal and live-cell imaging revealed that TNFα and Gag partially colocalized and were cotransported via Syx6-positive compartments/vesicles. Biochemical analyses indicate that TNFα directly binds the C-terminal domain of Syx6. Altogether, our data provide evidence that both Gag and TNFα make use of Syx6-mediated trafficking machinery and suggest that Gag expression does not inhibit but rather facilitates TNFα secretion in HIV-1 infection.


Asunto(s)
VIH-1 , Proteínas Qa-SNARE , Vesículas Transportadoras , Factor de Necrosis Tumoral alfa , Productos del Gen gag del Virus de la Inmunodeficiencia Humana , Endosomas/metabolismo , VIH-1/genética , VIH-1/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Transporte de Proteínas/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Unión Proteica , Dominios Proteicos , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , Humanos , Línea Celular , Vesículas Transportadoras/metabolismo , Replicación Viral/genética
16.
Curr Opin HIV AIDS ; 19(2): 47-55, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38169367

RESUMEN

PURPOSE OF REVIEW: Expression of noncoding RNAs (ncRNAs) is more tissue and cell type-specific than expression of protein-coding genes. Understanding the mechanisms of action of ncRNAs and their roles in HIV replication and latency may inform targets for the latent HIV reservoir reactivation or elimination with high specificity to CD4 + T cells latently infected with HIV. RECENT FINDINGS: While the number of studies in the field of ncRNAs and HIV is limited, evidence points to complex interactions between different ncRNAs, protein-coding RNAs, and proteins. Latency-reversing agents modulate the expression of ncRNAs, with some effects being inhibitory for HIV reactivation. An important limitation of basic research on the ncRNA mechanisms of action is the reliance on cell lines. Because of cell type specificity, it is uncertain whether the ncRNAs function similarly in primary cells. SUMMARY: Comprehensive functional screens to uncover all ncRNAs that regulate HIV expression and the detailed exploration of their mechanisms of action in relevant cell types are needed to identify promising targets for HIV reservoir clearance. Classes of ncRNAs as a whole rather than individual ncRNAs might represent an attractive target for reservoir elimination. Compound screens for latency reversal should factor in the complexity of their effects on ncRNAs.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Activación Viral/genética , Latencia del Virus/genética , Infecciones por VIH/genética , Infecciones por VIH/metabolismo , VIH-1/fisiología , Linfocitos T CD4-Positivos
17.
Neurobiol Learn Mem ; 208: 107890, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38215963

RESUMEN

C-C chemokine receptor 5 (CCR5) is a chemokine receptor involved in immune responses and a co-receptor for HIV infection. Recently, CCR5 has also been reported to play a role in synaptic plasticity, learning and memory, and cognitive deficits associated with normal aging, traumatic brain injury (TBI), and HIV-associated neurocognitive disorder (HAND). In contrast, the role of CCR5 in cognitive deficits associated with other disorders, including Alzheimer's disease (AD), is much less understood. Studies have reported an increase in expression of CCR5 or its ligands in both AD patients and AD rodent models, suggesting a correlation between AD and CCR5 expression. However, whether blocking CCR5 in specific brain regions, such as the hippocampus, could improve memory deficits in AD mouse models is unknown. To study the potential causal role of CCR5 in cognitive deficits in AD, we injected soluble Aß1-42 or a control (Aß42-1) oligomers in the dorsal CA1 region of the hippocampus and found that Aß1-42 injection resulted in severe memory impairment in the object place recognition (OPR) and novel object recognition (NOR) tests. Aß1-42 injection caused an increase in Ccr5, Ccl3, and Ccl4 in the dorsal hippocampus, and the expression levels of CCR5 and its ligands remained elevated at 2 weeks after Aß1-42 injection. Knocking down Ccr5 in the CA1 region of dorsal hippocampus reversed the increase in microglia number and size in dorsal CA1 and rescued memory deficits. These results indicate that CCR5 plays an important role in modulating Aß1-42-induced learning and memory deficits, and suggest that CCR5 antagonists may serve as a potential treatment to improve cognitive deficits associated with AD.


Asunto(s)
Enfermedad de Alzheimer , Infecciones por VIH , Animales , Humanos , Ratones , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Modelos Animales de Enfermedad , Hipocampo/fisiología , Infecciones por VIH/complicaciones , Infecciones por VIH/metabolismo , Aprendizaje , Trastornos de la Memoria/metabolismo , Fragmentos de Péptidos/farmacología , Fragmentos de Péptidos/metabolismo , Receptores CCR5/metabolismo , Receptores de Quimiocina/metabolismo
18.
PLoS Pathog ; 20(1): e1011881, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38190392

RESUMEN

In people living with HIV, Kaposi Sarcoma (KS), a vascular neoplasm caused by KS herpesvirus (KSHV/HHV-8), remains one of the most common malignancies worldwide. Individuals living with HIV, receiving otherwise effective antiretroviral therapy, may present with extensive disease requiring chemotherapy. Hence, new therapeutic approaches are needed. The Wilms' tumor 1 (WT1) protein is overexpressed and associated with poor prognosis in several hematologic and solid malignancies and has shown promise as an immunotherapeutic target. We found that WT1 was overexpressed in >90% of a total 333 KS biopsies, as determined by immunohistochemistry and image analysis. Our largest cohort from ACTG, consisting of 294 cases was further analyzed demonstrating higher WT1 expression was associated with more advanced histopathologic subtypes. There was a positive correlation between the proportion of infected cells within KS tissues, assessed by expression of the KSHV-encoded latency-associated nuclear antigen (LANA), and WT1 positivity. Areas with high WT1 expression showed sparse T-cell infiltrates, consistent with an immune evasive tumor microenvironment. We show that major oncogenic isoforms of WT1 are overexpressed in primary KS tissue and observed WT1 upregulation upon de novo infection of endothelial cells with KSHV. KSHV latent viral FLICE-inhibitory protein (vFLIP) upregulated total and major isoforms of WT1, but upregulation was not seen after expression of mutant vFLIP that is unable to bind IKKÆ´ and induce NFκB. siRNA targeting of WT1 in latent KSHV infection resulted in decreased total cell number and pAKT, BCL2 and LANA protein expression. Finally, we show that ESK-1, a T cell receptor-like monoclonal antibody that recognizes WT1 peptides presented on MHC HLA-A0201, demonstrates increased binding to endothelial cells after KSHV infection or induction of vFLIP expression. We propose that oncogenic isoforms of WT1 are upregulated by KSHV to promote tumorigenesis and immunotherapy directed against WT1 may be an approach for KS treatment.


Asunto(s)
Infecciones por VIH , Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiología , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo , Células Endoteliales/metabolismo , Infecciones por VIH/metabolismo , Isoformas de Proteínas/metabolismo , Microambiente Tumoral
19.
PLoS One ; 19(1): e0296502, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38166062

RESUMEN

BACKGROUND: Despite effective antiretroviral therapy, patients with human immunodeficiency virus type-1 (HIV) suffer from a high frequency of malignancies, but related risk factors remain elusive. Here, we focused on blood-circulating viral protein R (Vpr) of HIV, which induces proinflammatory cytokine production and genotoxicity by exogenous functions. METHODS AND FINDINGS: A total 404 blood samples of HIV patients comprising of 126 patients with malignancies (tumor group) and 278 patients without malignancies (non-tumor group), each of 96 samples was first selected by one-to-one propensity score matching. By a detergent-free enzyme-linked immunosorbent assays (detection limit, 3.9 ng/mL), we detected Vpr at a higher frequency in the matched tumor group (56.3%) than in the matched non-tumor group (39.6%) (P = 0.030), although there was no different distribution of Vpr levels (P = 0.372). We also detected anti-Vpr immunoglobulin (IgG), less frequently in the tumor group compared with the tumor group (22.9% for tumor group vs. 44.8% for non-tumor group, P = 0.002), and the proportion of patients positive for Vpr but negative of anti-Vpr IgG was significantly higher in the tumor group than in the non-tumor group (38.6% vs. 15.6%, respectively, P < 0.001). Additionally, Interleukin-6 (IL-6), the levels of which were high in HIV-1 infected patients (P < 0.001) compared to non-HIV-infected individuals, was significantly higher in advanced cases of tumors (P < 0.001), and IL-6 level was correlated with Vpr in the non-tumor group (P = 0.010). Finally, multivariate logistic regression analysis suggested a positive link of Vpr with tumor occurrence in HIV patients (P = 0.002). CONCLUSION: Vpr and IL-6 could be risk factors of HIV-1 associated malignancies, and it would be importance to monitor these molecules for well managing people living with HIV-1.


Asunto(s)
Infecciones por VIH , VIH-1 , Neoplasias , Humanos , Interleucina-6 , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/metabolismo , Estudios de Cohortes , Factores de Riesgo , Inmunoglobulina G
20.
J Phys Chem B ; 128(4): 960-972, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38251836

RESUMEN

HIV capsid proteins (CAs) may self-assemble into a variety of shapes under in vivo and in vitro conditions. Here, we employed simulations based on a residue-level coarse-grained (CG) model with full conformational flexibility to investigate hexagonal lattices, which are the underlying structural pattern for CA aggregations. Facilitated by enhanced sampling simulations to rigorously calculate CA dimerization and polymerization affinities, we calibrated our model to reproduce the experimentally measured affinities. Using the calibrated model, we performed unbiased simulations on several large systems consisting of 1512 CA subunits, allowing reversible binding and unbinding of the CAs in a thermodynamically consistent manner. In one simulation, a preassembled hexagonal CA sheet developed spontaneous curvatures reminiscent of those observed in experiments, and the edges of the sheet exhibited local curvatures larger than those of the interior. In other simulations starting with randomly distributed CAs at different concentrations, existing CA assemblies grew by binding free capsomeres to the edges and by merging with other assemblies. At high CA concentrations, rapid establishment of predominant aggregates was followed by much slower adjustments toward more regular hexagonal lattices, with increasing numbers of intact CA hexamers and pentamers being formed. Our approach of adapting a general CG model to specific systems by using experimental binding data represents a practical and effective strategy for simulating and elucidating intricate protein aggregations.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Proteínas de la Cápside/química , VIH-1/química , Cápside/metabolismo , Dimerización , Infecciones por VIH/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...